Soil Erosion assessment within the Erbil watershed using geo-informatics technology

المؤلفون

  • Hasan Mohammed Hameed Civil Engineering Department, Soran University, Erbil City, Iraq

DOI:

https://doi.org/10.32410/huj-10375

الكلمات المفتاحية:

Soil‌ Erosion، RUSLE، Erbil‌ Watershed، GIS، Remote sensing

الملخص

پوخته‌:

هه‌لسه‌نگاندنی داڕمانی خاک له‌ حه‌وزی هه‌ولێر به‌ به‌كارهینانی زانستی زانیاری شوێنی ‌هه‌لسه‌نگاندنی دابه‌شبونی شوینی بۆ تيكراى له‌ده‌ستدانی خاك بۆ هه‌رسالێك په يوه سته به‌ 5 فاكته‌ری سه‌ره‌كی له ياسى تيكراى له ده ستدانى خاكى گشتى (RUSLE) سه ره راى به كارهينانى زانستى زانيارى شوينى و چاوديرى دوور. ئامانجى ليكولينه وه كه ده رخستنى داخورانى خاكه له ريگاى شيكردنه وه ى شيوازه جياوازه كانى رووپوشى زه وى ياخود به كارهينانه جياوا زه كانى رووى زه وى. داخو رانى سالا نه ى خاك ئه ژ مار كراوه له ريگه ى لێكدانی داتای ژینگه‌و توپۆگرافی له ووردی (30) مه‌تر، له‌گه‌ل هه‌ژماركردن و شيكردنه وه ى داخورانى خاك به به كارهينانى چه ند چينيك كه هه ريه كه له داخورانى دابارينو داخورانى ليژى و جوراوجورى خاكى به‌كارهیناوه‌ بۆ ده‌ستكه‌وتنی نه‌خشه‌یه‌كی پۆلێنكراوی شوێنی بۆ (3) جۆر وه‌كو ناوچه‌ی له‌ده‌ستدانی له‌سه‌رخو، ناوچه‌ی له‌ده‌ستدانی مامناوه‌ند هه‌روه‌ها ناوچه‌ی له‌ده‌ستدانی به‌رز. له‌ ده‌رئه نجامدا ده‌ركه‌وت كه‌ 22.8% ناوچه‌ی لێكۆلینه‌وه‌ له‌ده‌ستدانی له‌سه‌رخۆ و، 9.5% ناوچه‌ی له‌ده‌ستدانی ناوه‌ند، و هه‌روه‌ها 67.8% ناوچه‌ی لێكۆلینه‌وه‌ له‌ده‌ستدانی به‌رز له‌خۆ ده‌گرێت. هه‌روه‌ها ئه‌م لێكۆلینه‌وه‌ی روونی كرده‌وه‌ رێژه‌ی له‌ ده‌ستدانى خاك له‌ ساليكدا مه‌زنده‌ ده‌كرێت به‌14.35 ته‌ن بۆ هه‌ر هێكتار ده‌بیت كه زورينه ى زه‌ویه‌ كشتوكالیه‌كانی ناوچه‌كه ده گريته وه.


تخمين تعرية التربة في حوض أربيل باستخدام تقنيات علم المعلومات المكانية
ان تخمين التوزيع المكاني لمعدل فواقد التربة لكل سنة تعتمد على خمس عوامل في قانون معدل فقدان التربة الشامل (RUSLE) وبالاضافة الى استخدام تقنيات نظم المعلومات المكانية والاستشعارعن بعد. هدف البحث هو حساب تاكل التربة بواسطة السيح السطحي في منطقة الدراسة لمختلف انواع الغطاء الارضي او استخدامات الارض المختلقة. تم احتساب معدل تعرية التربة السنوية من خلال دمج بيانات بيئية وطبوغرافية على مستوى 30 متر لكل خلية. تتالف الطبقات المستخدمة في تحليل تعرية التربة على كل من التعرية المطري، تعرية الانحدار، تعرية نوعية التربة، ادارة الغطاء النباتي و عمل حماية التربة. تم استخدام هذه العوامل في تخمين معدل فواقد التربة السنوية واستخراج خارطة مكانية لتصنيف منطقة الدراسة الى ثلاث اصناف؛ منطقة واطئة التعرية بلغت مساحتها 22.8% ومنطقة متوسطة التعرية وبلغت مساحتها 9.5% ومنطقة عالية التعرية بلغت مساحتها 67.8% و ذلك من اجمالي مساحة منطقة الدراسة. واظهرت الدراسة ان معدل فواقد التربة لكل سنة هو 14.35 طن لكل هكتار في السنة وهذه الفواقد تشمل اغلب المناطق الزراعية في منطقة الدراسة.

المراجع

Al Rammahi, A. H. J., & Khassaf, S. I. (2018). Estimation of soil erodibility factor in rusle equation for euphrates river watershed using GIS. International Journal of GEOMATE, 14(46), 164–169. https://doi.org/10.21660/2018.46.87788 DOI: https://doi.org/10.21660/2018.46.87788

Alexakis, D. D., Hadjimitsis, D. G., & Agapiou, A. (2013). Integrated use of remote sensing , GIS and precipitation data for the assessment of soil erosion rate in the catchment area of “ Yialias ” in Cyprus. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2013.02.013 DOI: https://doi.org/10.1016/j.atmosres.2013.02.013

Alkharabsheh, M. M., Alexandridis, T. K., Bilas, G., Misopolinos, N., & Silleos, N. (2013). Impact of land cover change on soil erosion hazard in northern Jordan using remote sensing and GIS. Procedia Environmental Sciences, 19, 912–921. https://doi.org/10.1016/j.proenv.2013.06.101 DOI: https://doi.org/10.1016/j.proenv.2013.06.101

Angima, S. D., Stott, D. E., Neill, M. K. O., Ong, C. K., & Weesies, G. A. (2003). Soil erosion prediction using RUSLE for central Kenyan highland conditions. 97, 295–308. https://doi.org/10.1016/S0167-8809(03)00011-2

Angima, S. D., Stott, D. E., O’Neill, M. K., Ong, C. K., & Weesies, G. A. (2003). Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture, Ecosystems and Environment, 97(1–3), 295–308. https://doi.org/10.1016/S0167-8809(03)00011-2 DOI: https://doi.org/10.1016/S0167-8809(03)00011-2

Bacchi, O. O. S. (2000). Soil erosion evaluation in a small watershed in Brazil through 137Cs fallout redistribution analysis and conventional models. Acta Geologica Hispanica, 35(3–4), 251–259.

chadli, K. (2016). Estimation of soil loss using RUSLE model for Sebou watershed (Morocco). Modeling Earth Systems and Environment, 2(2), 1–10. https://doi.org/10.1007/s40808-016-0105-y DOI: https://doi.org/10.1007/s40808-016-0105-y

Chalise, D., Kumar, L., & Kristiansen, P. (2019). Land Degradation by Soil Erosion in Nepal: A Review. Soil Systems, 3(1), 12. https://doi.org/10.3390/soilsystems3010012 DOI: https://doi.org/10.3390/soilsystems3010012

Ezekiel, I., Adesuji, A., Toyin, J., Akinlabi, A., & Olumide, S. (2020). Catena A GIS-based assessment of the potential soil erosion and fl ood hazard zones in Ekiti State , Southwestern Nigeria using integrated RUSLE and HAND models. Catena, 194(May), 104725. https://doi.org/10.1016/j.catena.2020.104725 DOI: https://doi.org/10.1016/j.catena.2020.104725

Fagbohun, B. J., Anifowose, A. Y. B., Odeyemi, C., Aladejana, O. O., & Aladeboyeje, A. I. (2016). GIS-based estimation of soil erosion rates and identification of critical areas in Anambra sub-basin, Nigeria. Modeling Earth Systems and Environment, 2(3). https://doi.org/10.1007/s40808-016-0218-3 DOI: https://doi.org/10.1007/s40808-016-0218-3

Fernández, C., & Vega, J. A. (2018). Evaluation of the rusle and disturbed wepp erosion models for predicting soil loss in the fi rst year after wild fi re in NW Spain. Environmental Research, 165(December 2017), 279–285. https://doi.org/10.1016/j.envres.2018.04.008 DOI: https://doi.org/10.1016/j.envres.2018.04.008

Fu, G., Chen, S., & Mccool, D. K. (2006). Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE , SEDD , and ArcView GIS. 85, 38–49. https://doi.org/10.1016/j.still.2004.11.009 DOI: https://doi.org/10.1016/j.still.2004.11.009

Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953–961. https://doi.org/10.1016/j.gsf.2015.10.007 DOI: https://doi.org/10.1016/j.gsf.2015.10.007

Ghalib, H. B., & Al-qurnawi, W. S. (2016). Estimation of soil erosion in northern Kirkuk Governorate , Iraq using RUSLE , remote sensing , and GIS ESTIMATION OF SOIL EROSION IN NORTHERN KIRKUK GOVERNORATE , IRAQ USING RUSLE , REMOTE SENSING AND GIS Alaa M . Atiaa AL-ABADI , Hussein B . GHALIB & Wasan S . AL-QURNAWI. January.

Gulinck, H., Poesen, J., Fu, B. J., Zhao, W. W., Chen, L. D., Zhang, Q. J., & Lu, Y. H. (2005). ASSESSMENT OF SOIL EROSION AT LARGE WATERSHED SCALE USING RUSLE AND GIS : A CASE STUDY IN THE LOESS PLATEAU OF CHINA. 85, 73–85. DOI: https://doi.org/10.1002/ldr.646

Hameed, H.M. (2017). Estimating the effect of urban growth on annual runoff volume using GIS in the Erbil

Sub-Basin of the Kurdistan Region of Iraq. Hydrology, 4(1). https://doi.org/10.3390/hydrology4010012 DOI: https://doi.org/10.3390/hydrology4010012

Hameed, Hasan Mohammed. (n.d.). Student thesis series INES nr 271 Water harvesting in Erbil Governorate, Kurdistan region, Iraq Detection of suitable sites using Geographic Information System and Remote Sensing.

Hameed, Hasan Mohammed, Rasul, G., Sherwan, F., Qurtas, S., & Hashemi, H. (2015). Impact of Urban Growth on Groundwater Levels using Remote Sensing-Case Study: Erbil City, Kurdistan Region of Iraq. In Journal of Natural Sciences Research www.iiste.org ISSN (Vol. 5, Issue 18). www.iiste.org

Hussein, M. H., Kariem, T. H., & Othman, A. K. (2007). Predicting soil erodibility in northern Iraq using natural runoff plot data. Soil and Tillage Research, 94(1), 220–228. https://doi.org/10.1016/j.still.2006.07.012 DOI: https://doi.org/10.1016/j.still.2006.07.012

Jazouli, A. El, Barakat, A., Khellouk, R., Rais, J., & Baghdadi, M. El. (2018). Author ’ s Accepted Manuscript Remote sensing and GIS techniques for prediction of land use land cover change effects on soil Reference : To appear in : Remote Sensing Applications : Society and Environment Oum Er Rbia River ( Morocco ). Remote Sensing Applications: Society and Environment. https://doi.org/10.1016/j.rsase.2018.12.004 DOI: https://doi.org/10.1016/j.rsase.2018.12.004

Karamage, F., Zhang, C., Liu, T., Maganda, A., & Isabwe, A. (2017). Soil erosion risk assessment in Uganda. Forests, 8(2), 1–20. https://doi.org/10.3390/f8020052 DOI: https://doi.org/10.3390/f8020052

Kayet, N., Pathak, K., Chakrabarty, A., & Sahoo, S. (2018). International Soil and Water Conservation Research Evaluation of soil loss estimation using the RUSLE model and SCS-CN method in hillslope mining areas. International Soil and Water Conservation Research. https://doi.org/10.1016/j.iswcr.2017.11.002 DOI: https://doi.org/10.1016/j.iswcr.2017.11.002

Kheir, R. B., Abdallah, C., & Khawlie, M. (2008). Assessing soil erosion in Mediterranean karst landscapes of Lebanon using remote sensing and GIS. 99, 239–254. https://doi.org/10.1016/j.enggeo.2007.11.012 DOI: https://doi.org/10.1016/j.enggeo.2007.11.012

Kouli, M., Soupios, P., & Vallianatos, F. (2009). Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environmental Geology, 57(3), 483–497. https://doi.org/10.1007/s00254-008-1318-9 DOI: https://doi.org/10.1007/s00254-008-1318-9

Lee, G.-S., & Lee, K.-H. (2006). Scaling effect for estimating soil loss in the RUSLE model using remotely sensed geospatial data in Korea. Hydrology and Earth System Sciences Discussions, 3(1), 135–157. https://doi.org/10.5194/hessd-3-135-2006 DOI: https://doi.org/10.5194/hessd-3-135-2006

Lin, J., Guan, Q., Tian, J., Wang, Q., Tan, Z., Li, Z., & Wang, N. (2020). Catena Assessing temporal trends of soil erosion and sediment redistribution in the Hexi Corridor region using the integrated RUSLE-TLSD model. Catena, 195(May), 104756. https://doi.org/10.1016/j.catena.2020.104756 DOI: https://doi.org/10.1016/j.catena.2020.104756

Miheretu, B. A., & Yimer, A. A. (2018). Estimating soil loss for sustainable land management planning at the Gelana sub-watershed, northern highlands of Ethiopia. International Journal of River Basin Management, 16(1), 41–50. https://doi.org/10.1080/15715124.2017.1351978 DOI: https://doi.org/10.1080/15715124.2017.1351978

Millward, A. A., & Mersey, J. E. (1999). Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena, 38(2), 109–129. https://doi.org/10.1016/S0341-8162(99)00067-3 DOI: https://doi.org/10.1016/S0341-8162(99)00067-3

Napoli, M., Cecchi, S., Orlandini, S., Mugnai, G., & Zanchi, C. A. (2016). Catena Simulation of fi eld-measured soil loss in Mediterranean hilly areas ( Chianti , Italy ) with RUSLE. Catena, 145, 246–256. https://doi.org/10.1016/j.catena.2016.06.018 DOI: https://doi.org/10.1016/j.catena.2016.06.018

Oliveira, P. T. S., Rodrigues, D. B. B., Alves Sobrinho, T., Panachuki, E., & Wendland, E. (2013). Uso de dados SRTM no cálculo do fator topográfico da (R)USLE. Acta Scientiarum - Technology, 35(3), 507–513. https://doi.org/10.4025/actascitechnol.v35i3.15792 DOI: https://doi.org/10.4025/actascitechnol.v35i3.15792

Ostovari, Y., Ghorbani-dashtaki, S., & Bahrami, H. (2017). Soil loss prediction by an integrated system using RUSLE, GIS and remote sensing in semi-arid region. Geoderma Regional. https://doi.org/10.1016/j.geodrs.2017.06.003 DOI: https://doi.org/10.1016/j.geodrs.2017.06.003

Pamela, Yukni, A., Imam, S. A., & Kartiko, R. D. (2018). The selective causative factors on landslide susceptibility assessment: Case study Takengon, Aceh, Indonesia. AIP Conference Proceedings, 1987(August). https://doi.org/10.1063/1.5047374 DOI: https://doi.org/10.1063/1.5047374

Phinzi, K., & Silas, N. (2019). International Soil and Water Conservation Research The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing : A review. International Soil and Water Conservation Research, 7(1), 27–46. https://doi.org/10.1016/j.iswcr.2018.12.002 DOI: https://doi.org/10.1016/j.iswcr.2018.12.002

Pijl, A., Reuter, L. E. H., Quarella, E., Vogel, T. A., & Tarolli, P. (2020). Catena GIS-based soil erosion modelling under various steep-slope vineyard practices. Catena, 193(February), 104604. https://doi.org/10.1016/j.catena.2020.104604 DOI: https://doi.org/10.1016/j.catena.2020.104604

Prasannakumar, V., Vijith, H., Abinod, S., & Geetha, N. (2012). Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geoscience Frontiers, 3(2), 209–215. https://doi.org/10.1016/j.gsf.2011.11.003 DOI: https://doi.org/10.1016/j.gsf.2011.11.003

Publishing, B., Hudson, M., & Limited, B. (1997). Predicting Soil Loss by Water U niversal S oil L oss E quation ( USLE ) Predicting Soil Loss by Water U niversal S oil L oss E quation ( USLE ). December 2015, 3–5.

Rahman, R., Shi, Z. H., & Chongfa, C. (2009). Soil erosion hazard evaluation — An integrated use of remote sensing , GIS and statistical approaches with biophysical parameters towards management strategies. 220, 1724–1734. https://doi.org/10.1016/j.ecolmodel.2009.04.004 DOI: https://doi.org/10.1016/j.ecolmodel.2009.04.004

Renard, K. G., Meyer, L. D., & Foster, G. R. (1997). Revised Soil Universal Soil Loss Equation. 1–18. http://www.grr.ulaval.ca/gae_3005/Documents/References/RUSLE/ah703_ch1.pdf

Saha, A., Ghosh, P., & Mitra, B. (2018). GIS Based Soil Erosion Estimation Using Rusle Model : A Case Study of Upper Kangsabati Watershed, West Bengal, India. Int. J Environ Sci Nat Res, 13(5). https://doi.org/10.19080/IJESNR.2018.13.555871 DOI: https://doi.org/10.19080/IJESNR.2018.13.555871

Shi, Z. H., Cai, C. F., Ding, S. W., Wang, T. W., & Chow, T. L. (2004). Soil conservation planning at the small watershed level using RUSLE with GIS: A case study in the Three Gorge Area of China. Catena, 55(1), 33–48. https://doi.org/10.1016/S0341-8162(03)00088-2 DOI: https://doi.org/10.1016/S0341-8162(03)00088-2

Shiono, T., Kamimura, K., & Okushima, S. (2002). Soil Loss Estimation on a Local Scale for Soil. Japan Agricultural Research Quarterly, 36(3), 157–161. DOI: https://doi.org/10.6090/jarq.36.157

Singh, G., & Panda, R. K. (2017). International Soil and Water Conservation Research Grid-cell based assessment of soil erosion potential for identi fi cation of critical erosion prone areas using USLE , GIS and remote sensing : A case study in the Kapgari watershed , India. International Soil and Water Conservation Research, 5(3), 202–211. https://doi.org/10.1016/j.iswcr.2017.05.006 DOI: https://doi.org/10.1016/j.iswcr.2017.05.006

Teng, H., Liang, Z., Chen, S., Liu, Y., Viscarra, R. A., Chappell, A., Yu, W., & Shi, Z. (2018). Science of the Total Environment Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. 635, 673–686. https://doi.org/10.1016/j.scitotenv.2018.04.146 DOI: https://doi.org/10.1016/j.scitotenv.2018.04.146

Thomas, J., Joseph, S., & Thrivikramji, K. P. (2017). Author ’ s Accepted Manuscript Estimation of soil erosion in a rain shadow river function. International Soil and Water Conservation Research. https://doi.org/10.1016/j.iswcr.2017.12.001 DOI: https://doi.org/10.1016/j.iswcr.2017.12.001

van der Knijff, J. M., Jones, R. J. A., & Montanarella, L. (2000). Soil erosion risk assessment in Europe. Luxembourg: Office for Official Publications of the European Communities, EUR 19022, 32. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Soil+Erosion+Risk+Assessment+in+Italy#0

Yuksel, A., Gundogan, R., & Akay, A. E. (2008). Using the remote sensing and GIS technology for erosion risk mapping of Kartalkaya Dam watershed in Kahramanmaras, Turkey. Sensors, 8(8), 4851–4865. https://doi.org/10.3390/s8084851 DOI: https://doi.org/10.3390/s8084851

منشور

2021-03-20

إصدار

القسم

Articles

كيفية الاقتباس

Mohammed Hameed, H. . (2021). Soil Erosion assessment within the Erbil watershed using geo-informatics technology. مجلة جامعة حلبجة:: گۆڤاری زانکۆی هەڵەبجە, 6(1), 311-329. https://doi.org/10.32410/huj-10375

المؤلفات المشابهة

1-10 من 69

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.